A Neuro-Fuzzy Classifier for Customer Churn Prediction

نویسندگان

  • Hossein Abbasimehr
  • Mostafa Setak
  • M. J. Tarokh
چکیده

Churn prediction is a useful tool to predict customer at churn risk. By accurate prediction of churners and non-churners, a company can use the limited marketing resource efficiently to target the churner customers in a retention marketing campaign. Accuracy is not the only important aspect in evaluating a churn prediction models. Churn prediction models should be both accurate and comprehensible. Therefore, Adaptive Neuro Fuzzy Inference System (ANFIS) as neuro-fuzzy classifier is applied to churn prediction modeling and benchmarked to traditional rulebased classifier such as C4.5 and RIPPER. In this paper, we have built two ANFIS models including ANFIS-Subtractive (subtractive clustering based fuzzy inference system (FIS)) and ANFIS-FCM (fuzzy C-means (FCM) based FIS) models. The results showed that both ANFIS-Subtractive and ANFIS-FCM models have acceptable performance in terms of accuracy, specificity, and sensitivity. In addition, ANFIS-Subtractive and ANFIS-FCM clearly induce much less rules than C4.5 and RIPPER. Hence ANFIS-Subtractive and ANFIS-FCM are the most comprehensible techniques tested in the experiments. These results indicate that ANFIS shows acceptable performance in terms of accuracy and comprehensibility, and it is an appropriate choice for churn prediction applications. General Terms Data Mining & Churn

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Alpha-cut Fuzzy C-means, Fuzzy ARTMAP and Cox Regression Model for Customer Churn Prediction

As customers are the main asset of any organization, customer churn management is becoming a major task for organizations to retain their valuable customers. In the previous studies, the applicability and efficiency of hierarchical data mining techniques for churn prediction by combining two or more techniques have been proved to provide better performances than many single techniques over a nu...

متن کامل

A Fuzzy Rule-Based Learning Algorithm for Customer Churn Prediction

Customer churn has emerged as a critical issue for Customer Relationship Management and customer retention in the telecommunications industry, thus churn prediction is necessary and valuable to retain the customers and reduce the losses. Recently rule-based classification methods designed transparently interpreting the classification results are preferable in customer churn prediction. However ...

متن کامل

A Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)

Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Predict...

متن کامل

Customers Churn Prediction and Attribute Selection in Telecom Industry Using Kernelized Extreme Learning Machine and Bat Algorithms

With the fast development of digital systems and concomitant information technologies, there is certainly an incipient spirit in the extensive overall economy to put together digital Customer Relationship Management (CRM) systems. This slanting is further more palpable in the telecommunications industry, in which businesses turn out to be increasingly digitalized. Customer churn prediction is a...

متن کامل

Churn Prediction Model in Retail Banking Using Fuzzy C-means Clustering

The paper presents model based on fuzzy methods for churn prediction in retail banking. The study was done on the real, anonymised data of 5000 clients of a retail bank. Real data are great strength of the study, as a lot of studies often use old, irrelevant or artificial data. Canonical discriminant analysis was applied to reveal variables that provide maximal separation between clusters of ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011